Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(6): 1722-1728, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36926566

RESUMO

The on-surface synthesis of nano-graphenes has led the charge in prototyping structures with perspectives beyond silicon-based technology. Following reports of open-shell systems in graphene-nanoribbons (GNRs), a flurry of research activity was directed at investigating their magnetic properties with a keen eye for spintronic applications. Although the synthesis of nano-graphenes is usually carried out on Au(111), the substrate is difficult to use for electronic decoupling and spin-polarized measurements. Using a binary alloy Cu3Au(111), we show possibilities for gold-like on-surface synthesis compatible with spin polarization and electronic decoupling known from copper. We prepare copper oxide layers, demonstrate the synthesis of GNRs, and grow thermally stable magnetic Co islands. We functionalize the tip of a scanning tunneling microscope with carbon-monoxide, nickelocene, or attach Co clusters for high-resolution imaging, magnetic sensing, or spin-polarized measurements. This versatile platform will be a valuable tool in the advanced study of magnetic nano-graphenes.

2.
MethodsX ; 10: 101964, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36578290

RESUMO

We demonstrate a straightforward approach to integrating a magnetic field into a low-temperature scanning tunneling microscope (STM) by adhering an NdFeB permanent magnet to a magnetizable sample plate. To render our magnet concept compatible with high-temperature sample cleaning procedures, we make the irreversible demagnetization of the magnet a central part of our preparation cycle. After sacrificing the magnet by heating it above its Curie temperature, we use a transfer tool to attach a new magnet in-situ prior to transferring the sample into the STM. We characterize the magnetic field created by the magnet using the Abrikosov vortex lattice of superconducting NbSe2. Excellent agreement between the distance dependent magnetic fields from experiments and simulations allows us to predict the magnitude and orientation of magnetic flux at any location with respect to the magnet and the sample plate. Our concept is an accessible solution for field-dependent surface science studies that require fields in the range of up to 400 mT and otherwise detrimental heating procedures.•Accessible magnetic field generation.•Selectable field strength and orientation.•Compatible with high-temperature sample preparation.

3.
MethodsX ; 9: 101784, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898613

RESUMO

Quasiparticle interference imaging (QPI) offers insight into the band structure of quantum materials from the Fourier transform of local density of states (LDOS) maps. Their acquisition with a scanning tunneling microscope is traditionally tedious due to the large number of required measurements that may take several days to complete. The recent demonstration of sparse sampling for QPI imaging showed how the effective measurement time could be fundamentally reduced by only sampling a small and random subset of the total LDOS. However, the amount of required sub-sampling to faithfully recover the QPI image remained a recurring question. Here we introduce an adaptive sparse sampling (ASS) approach in which we gradually accumulate sparsely sampled LDOS measurements until a desired quality level is achieved via compressive sensing recovery. The iteratively measured random subset of the LDOS can be interleaved with regular topographic images that are used for image registry and drift correction. These reference topographies also allow to resume interrupted measurements to further improve the QPI quality. Our ASS approach is a convenient extension to quasiparticle interference imaging that should remove further hesitation in the implementation of sparse sampling mapping schemes. • Accumulative sampling for unknown degree of sparsity • Controllably interrupt and resume QPI measurements • Scattering wave conserving background subtractions.

4.
MethodsX ; 6: 1279-1285, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31198689

RESUMO

We present here the straightforward implementation of pump-probe methods into existing scanning tunneling microscopy (STM) systems. Our method uses the waveform-sequencing abilities of a standard arbitrary waveform generator (AWG) and a simple mechanical relay switch that either connects the regular STM control electronics or the AWG to the STM system. Our upgrade further enables pulsed-ESR excitation for advanced STM based spin-resonance experiments. We demonstrate the technical implementation, signal detection using a lock-in amplifier, and cross-correlation measurements of DC/DC and DC/RF pulses highlighting our ˜5 ns time resolution, here limited by the speed of the available electronics. Our setup is highly versatile and can be extended to suit other needs of STM based investigations such as required in diverse mapping schemes or the coherent manipulation of qubits. •Plug and Play Pump-Probe Capability•One setup for Pump-Probe Spectroscopy and Pulsed-ESR•Waveform Memory Saving and Versatile due to Waveform-Sequencing of Arbitrary Waveforms.

5.
Phys Rev Lett ; 121(2): 027201, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30085712

RESUMO

We use spin-polarized scanning tunneling microscopy to demonstrate that Ho atoms on magnesium oxide exhibit a coercive field of more than 8 T and magnetic bistability for many minutes, both at 35 K. The first spontaneous magnetization reversal events are recorded at 45 K, for which the metastable state relaxes in an external field of 8 T. The transverse magnetic anisotropy energy is estimated from magnetic field and bias voltage dependent switching rates at 4.3 K. Our measurements constrain the possible ground state of Ho single-atom magnets to either J_{z}=7 or 8, both compatible with magnetic bistability at fields larger than 10 mT.

6.
ACS Nano ; 8(7): 7099-105, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24998795

RESUMO

We use rotational excitation spectroscopy with a scanning tunneling microscope to investigate the rotational properties of molecular hydrogen and its isotopes physisorbed on the surfaces of graphene and hexagonal boron nitride (h-BN), grown on Ni(111), Ru(0001), and Rh(111). The rotational excitation energies are in good agreement with ΔJ = 2 transitions of freely spinning p-H2 and o-D2 molecules. The variations of the spectral line shapes for H2 among the different surfaces can be traced back to a molecular resonance-mediated tunneling mechanism. Our data for H2/h-BN/Rh(111) suggest a local intrinsic gating on this surface due to lateral static dipoles. Spectra on a mixed monolayer of H2, HD, and D2 display all three J = 0 → 2 rotational transitions, irrespective of tip position, thus pointing to a multimolecule excitation, or molecular mobility in the physisorbed close-packed layer.

7.
Phys Rev Lett ; 111(17): 175303, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24206501

RESUMO

We demonstrate rotational excitation spectroscopy with the scanning tunneling microscope for physisorbed H(2) and its isotopes HD and D(2). The observed excitation energies are very close to the gas phase values and show the expected scaling with the moment of inertia. Since these energies are characteristic for the molecular nuclear spin states we are able to identify the para and ortho species of hydrogen and deuterium, respectively. We thereby demonstrate nuclear spin sensitivity with unprecedented spatial resolution.

8.
ACS Nano ; 6(10): 9299-304, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23020302

RESUMO

By combining angle-resolved photoemission spectroscopy and scanning tunneling microscopy we reveal the structural and electronic properties of multilayer graphene on Ru(0001). We prove that large ethylene exposure allows the synthesis of two distinct phases of bilayer graphene with different properties. The first phase has Bernal AB stacking with respect to the first graphene layer and displays weak vertical interaction and electron doping. The long-range ordered moiré pattern modulates the crystal potential and induces replicas of the Dirac cone and minigaps. The second phase has an AA stacking sequence with respect to the first layer and displays weak structural and electronic modulation and p-doping. The linearly dispersing Dirac state reveals the nearly freestanding character of this novel second-layer phase.


Assuntos
Cristalização/métodos , Grafite/química , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Rubídio/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Transição de Fase , Propriedades de Superfície
9.
Phys Rev Lett ; 109(6): 066101, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-23006283

RESUMO

The low-temperature adsorption of isolated transition metal adatoms (Mn, Co, and Fe) onto hexagonal boron nitride monolayers on Rh(111) creates a bistable adsorption complex. The first state considerably weakens the hexagonal boron nitride- (h-BN-) substrate bond for 60 BN unit cells, leading to a highly symmetric ring in STM images, while the second state is imaged as a conventional adatom and leaves the BN-substrate interaction intact. We demonstrate reversible switching between the two states and, thus, controlled pinning and unpinning of the h-BN layer from the metal substrate. I(z) and d lnI/dz curves are used to reveal the BN deformation in the ring state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...